If it's not what You are looking for type in the equation solver your own equation and let us solve it.
42=c^2+c
We move all terms to the left:
42-(c^2+c)=0
We get rid of parentheses
-c^2-c+42=0
We add all the numbers together, and all the variables
-1c^2-1c+42=0
a = -1; b = -1; c = +42;
Δ = b2-4ac
Δ = -12-4·(-1)·42
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-13}{2*-1}=\frac{-12}{-2} =+6 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+13}{2*-1}=\frac{14}{-2} =-7 $
| 3/4x+1.5x=x+1 | | 10n-20=20 | | -17p-5(2-5p)=3(p-3)-31 | | 261=-u+12 | | H(-3)=x2-5x-3 | | -171=-3(8+7a) | | 4n-9=2(5+2n)n= | | 6(y+3)=-2(5y-2)+8y | | 106=2/3x | | 9y=64+4 | | K(5)=-7x+1 | | K(-1)=-7x+1 | | 4(w-2)=9w-18 | | 0x+4=9x+5 | | 0x+4=9x+1 | | K(0)=-7x+1 | | 0x+31=9x+2 | | 0x+3=9x+1 | | 8u=4u+8 | | 19=(x-50)=180 | | 6x-3+3(2x+3)=-3(x+4) | | 128=16+(4x/13) | | -5w+13=-3(w-7) | | 2/6=u/3 | | 5x+5(-3x-4)=-32-8x | | 21p-5(3-5p)=2(p-6)-11 | | r/2-7=r/4+5 | | (x+8)(x-2)=(x+2)*2 | | 16x-5=1=14x | | 6×y+3×y=72 | | 3x-10=4 | | 3/4(7x-1)=-6 |